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10.1 Introduction
Even the existing federated learning (FL) framework has been shown successfully
striking the balance between the communication and computation complexities, how-
ever, the server-to-slaver type of learning structure still forgoes the topology feature
and/or information of distributed sampled data for further increasing the communica-
tion efficiency and/or the generalization performance. In this chapter, we investigate
more advanced graph-aware federated learning (GFL) models and algorithms, and
then present the theoretical justifications and numerical performance. This chapter
mainly includes the key FL techniques with emphasis on different goals of building
GFL systems.

Decentralized federated learning (DFL) is one of the most straightforward ways
that can further improve both the computing and communication efficiency of the
classic FL system, where there are n devices connected over a graph and which
jointly learn a common interest machine learning model. In contrast to the classic
FedAvg [18], DFL is more robust to failure of message passing among the nodes and
staleness of transmitting data packages. Also, DFL has the nature of having low com-
munication overheads and keeping the data confidential during the data transmission
stage, as there is no central server that requests the model parameters from all the
devices. For example, in a health medical system, the patients’ data and information
are private, so they are not shareable over either hospitals or doctors. However, note
that there is still a need that a machine learning model can extract the critical latent
space structures through a sufficiently large dataset to remove the outliers. It has been
shown that DFL is one of the most promising strategies to improve communication
efficiency and model performance through aggregating electronic health records over
multiple data resources [17].

In practice, the global model might not be unique in the sense that there could
be multiple global models, each possibly containing different features of data due
to the heterogeneity of data distributions. Selecting the correct memberships for the
local models to each global model is not trivial, which would result in a combinato-
rial problem. One of the most straightforward ways is to try different global models
for fitting the local data and select the best one at each iteration, which is called an
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iterative federated clustering algorithm and proposed in [6]. However, this way is
time-consuming as it needs all the global models to traverse all the local data sets. As
the data distributions possess a cluster structure, a K-means type of algorithm is ap-
propriate for clustering the local models based on the similarity among the nodes. In
[24], federated stochastic expectation maximization (FeSEM) is proposed based on
measuring the distance between the two model parameters in which one is the local
model parameter and the other is the weighted mean of the parameters of the neigh-
boring models selected by the EM algorithm. It turns out that FeSEM can learn the
memberships of the local model and optimize the local loss values in an alternative
way, and achieve state-of-the-art results.

Inspired by the hierarchical learning strategy, a bilevel optimization based FL
model was recently proposed, which considers the membership selection (or more
general feature representation) and local data adaptation as two levels of an opti-
mization problem. In such a way, the upper level (UL) model can integrate domain
knowledge into the FL model, while the lower level (LL) model can use this informa-
tion for adapting the local data personally. For example, the graph knowledge about
the similarity among the nodes would be proportional to the heterogeneity of data fea-
tures, which can be used for enhancing the generalization performance of FL models.
Despite a line of graph learning-related works that mostly focus on aggregating graph
neural networks (GNNs) [10], the graph information in these studies only appears in
the respective local models rather than incorporating any global graph structure infor-
mation. To the best of our knowledge, the scenario in which FL clients are organized
into graph embedding is rarely investigated. Under this setting, we will introduce
the bilevel optimization enhanced graph-aided federated learning, which applies the
graph embedding techniques to capture inherent information over the topology of FL
clients.

In this chapter, we will address the heterogeneity issue of the FL systems, and
bring in the GFL models and corresponding algorithms, as well as their theoretical
and numerical justifications.

10.2 Decentralized federated learning
When clients are connected over a graph, the communication only happens between
two neighboring nodes. In this setting, we consider a communication graph denoted
by G � {V,E}, where V denotes the set of the vertices in this graph and E stands for
the edges. We use n to represent the total number of nodes, i.e., |V|, in this graph,
and subsequently i ∈ [n] as the index of each node. The optimization problem of the
distributed learning system can be mathematically formulated as follows:

(P1) min
θ i∈Rd ,∀i

1

n

n∑
i=1

Eξi∼Di
Fi(θ i; ξi) such that θ i = θ j , j ∈ Ni ,∀i, (10.1)
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where Ni represents the set of node i neighbors, Fi(θ i; ξi) denotes the (possible non-
convex) loss function at the ith node, ξi is the data sample collected at node i and
following a certain distribution Di . The goal of this model in Eq. (10.1) is to learn
a global model θ ∈ Rd such that the sum of total loss functions {Fi(θ; ξi),∀i} is
minimized based on the datasets {Di ,∀i} sampled over graph G.

There are many existing algorithms that can solve this problem in a distributed
way, including distributed stochastic gradient descent [2], primal–dual algorithms
[12,13], (variance-reduced) gradient tracking [16,20], etc. The main idea is to update
each local optimization variable by aggregating its neighbor models’ parameters, fol-
lowed by one step of stochastic gradient descent type of update. The issue here is
that each round of the model aggregation would incur a large number of parame-
ters sent over the network, which might not be feasible or incur heavy delays in the
model update. Therefore, communication-efficient transmission schemes are moti-
vated and proposed for reducing the overload of passing model parameters per round
[11].

To present the DFL algorithms, we first define the mixing matrix W which rep-
resents the connectivity of the nodes as follows: 1) wij > 0 if (i, j) ∈ E and 0
otherwise; 2) W is doubly stochastic, i.e., 1T W = 1T and W1 = 1, where wij de-
notes the (i, j)th entry of matrix W and 1 stands for the all one vector. Typical
rules that satisfy these two properties include the Laplacian, Metropolis–Hasting,
and maximum-degree weights [23]. Let the gradient estimate of the loss function at
point θ be defined by

∇̂fi(θ) �m−1
m∑

k=1

∇Fi(θ; ξik), (10.2)

where ξik denotes the kth data sample at node i and m is the mini-batch size. Then,
the local update of the model parameter is

θ t+1
i = θ t

i − αt ∇̂fi(θ
t
i ), (10.3)

where t denotes the index of iteration and αt is the step size. Similar as the classic FL
scheme, for every τ iterations, we additionally perform one round of communication
based on the local update, i.e.,

θ t+1
i =

∑
j∈Ni

Wij θ
t
j − αt ∇̂fi(θ

t
i ) if mod(t, τ ) = 0, (10.4)

where the step
∑

j∈Ni
Wij θ

t
j refers to the model aggregation and 1/τ refers to the

communication frequency. The model update by Eq. (10.3) followed by Eq. (10.4) per
every τ steps is a straightforward extension from classic distributed stochastic gradi-
ent descent (DSGD) to SGD-based DFL. Here, we call this algorithm DFL-SGD. It is
not hard to see that DFL-SGD tries to balance the trade-off between the iterates’ con-
vergence and communication efficiency. Intuitively, the local update optimizes the
individual model without sharing the data samples, and the model aggression step
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enforces the consensus among the distributed model parameters so that the learned
model can leverage the networked data to reduce the variance of the local stochastic
gradient estimate.

The DFL-SGD algorithm performs well when the network is homogeneous.
When the heterogeneity of data distributions {Di ,∀i} increases, it is well known
that performance of distributed SGD (DSGD) algorithm decreases as the discrepancy
term of the data distributions will show up at the denominator of the convergence rate
of DSGD [21]. As DFL-SGD inherits from DSGD, this issue remains. A more ad-
vanced technique, stochastic gradient tracking, is proposed to approximate the global
gradient estimate locally and improve the numerical performance of DSGD deployed
in the heterogeneous networks [16]. When the communication efficiency is taken into
account, the local updates of the model are as follows:

θ t+1
i = θ t

i − αtϑ t
i , (10.5a)

ϑ t+1
i = ϑ t

i + ∇̂fi(θ
t+1
i ) − ∇̂fi(θ

t
i ), (10.5b)

where ϑ t
i is called gradient tracker and initialized as vector 0. It can be seen that the

gradient tracking based local update Eq. (10.5a) is analogous to Eq. (10.3) with the
difference being only the gradient estimate. In Eq. (10.3), the local stochastic gradi-
ent estimate is directly used for the model update, while in Eq. (10.5a) an auxiliary
variable is adopted instead. From the theory perspective, ϑ t

i can keep tracking the net-
work total stochastic gradient n−1 ∑n

i=1 ∇̂fi(θ
t
i ) through the update rule Eq. (10.5b).

Similar to DFL-SGD, gradient tracking based DFL (DFL-GT) also conducts the
model aggregation after every τ local update steps as follows:

θ t+1
i =

∑
j∈Ni

Wij θ
t
j − αtϑ t

i if mod(t, τ ) = 0, (10.6a)

ϑ t+1
i =

∑
j∈Ni

Wijϑ
t
j + ∇̂fi(θ

t+1
i ) − ∇̂fi(θ

t
i ) if mod(t, τ ) = 0. (10.6b)

This DFL algorithm has been studied in [17] for decentralized learning of electronic
health records. Under the mild assumption on the gradient Lipschitz continuity of the
loss function, it has been established in [14] that DFL-GT algorithm can find the first-
order stationary points (FOSPs) with a convergence rate of O(1/

√
nT ) in the sense

that both the first-order stationarity in terms of the gradient size of the loss function
in the consensus space, i.e., E‖n−1 ∑n

i=1 ∇fi(θ̄
t
)‖2, and the consensus violation,

i.e., E[n−1 ∑n
i=1 ‖θ t

i − θ̄
t‖2], are shrinking with the speed of O(1/

√
nT ), where

fi(θ i ) � Eξi∼Di
Fi(θ i; ξi), θ̄ = n−1 ∑n

i=1 θ i , and the expectation is taken over both
the randomness of data samples and the index of the iterations. Moreover, it has been
also proven in [14] that τ can be chosen as large as O(T 1/4) (i.e., the communication
efficiency of DFL-GT is O(T 3/4) rather than O(T ) required in the classic DSGD),
and this class of algorithms is also extendable to solve problems in time-varying
directed graphs.
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FIGURE 10.1

Loss value v.s. communication rounds on a synthetic dataset (testing loss).

The general DFL framework with algorithms DFL-SGD and DFL-GT is summa-
rized in Algorithm 1.

Algorithm 1 Decentralized federated learning framework (DFL).

1: Initialize step size sequence αt

2: for t = 0,1,2, . . . , T do
3: Randomly sample m data points locally
4: Estimate gradient of the local loss function by Eq. (10.2)
5: Perform local model update by Eq. (10.3) or Eq. (10.5a) � at each node in

parallel
6: if t is a multiple of τ , i.e., mod (t, τ ) = 0 then
7: Update model parameters by Eq. (10.4) or Eq. (10.6a) and Eq. (10.6b)
8: end if
9: end for

We set up a simple topology of five nodes, using the same groundtruth weights,
which are then multiplied by inputs belonging to various intervals of uniform distribu-
tion (including [−30,30], [40,100], [−50,−55], [−1,1], [−0.1,0.1]) with different
five nonlinear functions (tanh, sigmoid, ReLu, sine, and cosine) to generate different
heterogeneous data.

The numerical results of comparing FedAvg, DFL-SGD, and DFL-GT are shown
in Fig. 10.1, where we use a three-layer nonlinear multilayer perceptron to regress
these data, and use the same step size scheduling rule (i.e., 15/

√
t) for DFL-SGD

and DFL-GT. It can be seen that FedAvg converges the fastest because it aggregates
the model completely for each round. DFL-GT converges faster than DFL-SGD as
the gradient tracker over the graph can approximate the full gradient as the iterates
proceed.
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10.3 Multi-center federated learning
Besides the advanced algorithms designed for heterogeneous FL networks, cluster-
structured models are also considered for tackling the issues of non-i.i.d. data distri-
butions over distributed networks. The underlying assumption is that there exist K

global models and the scattered local models only belong to one of these global ones.
In FeSEM [24], a multi-center model aggregation model is used for FL, where all
the local models are partitioned into K clusters, denoted as {Ck, k ∈ [K]}. Aside from
minimizing the consensus errors and regression loss function, an assignment of each
model to its nearest cluster is also included in the learning process. Specifically, the
overall problem is formulated as follows:

(P2) min
θ i ,θ̄k,rik,∀i,k

1

n

n∑
i=1

Eξ∼Di
Fi(θ i; ξ) + λ

n

K∑
k=1

n∑
i=1

rikdist(θ i , θ̄k), (10.7)

where λ controls the trade-off between the supervised loss and multi-center based
model discrepancy, dist(·, ·) denotes the distance between two model parameter
spaces, θ̄k represents the kth center of cluster Ck , and rik is the binary assignment
variable that indicate whether the ith model is classified to the kth cluster or not. The
regularization term measures the distance between each local model to its nearest
global model.

For the multi-center FL model, the expectation-maximization (EM) method is one
of the most standard techniques for solving clustering related problems. Combining
with a local supervised learning update, a stochastic block coordinate descent type of
algorithm is proposed for the FL setting, called federated stochastic EM (FeSEM),
in [24]. The main idea of FeSEM is adapting the EM algorithm in searching for the
multiple centers θ̄k while fixing local model parameters {θ i ,∀i}, and then perform-
ing local updates of θ i for τ steps to minimize the local loss function values while
keeping the assignment of every model to each cluster learned from the previous
step unchanged. More detailed procedures of FeSEM are shown in Algorithm 2 and
explained as follows:
E-Step. The first step of each model is to look for the nearest clusters based on the
distance between the local model parameter θ t

i and the existing centers {θ̄ t

j , j ∈ [K]}
and obtain the assignment variable by

rt
ik =

{
1, if k = arg minj dist(θ t

i , θ̄
t

j ),

0, otherwise.
(10.8)

M-Step. Then, the center of each cluster is calculated by

θ̄
t

k = 1∑n
i=1 rik

n∑
i=1

rt
ikθ

t
i (10.9)

while fixing model parameters and current center assignments.
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Algorithm 2 FeSEM – Federated Stochastic EM [24].

1: Initialize K , {θ0
i }, {θ̄ t

k}
2: for t = 0,1,2, . . . , T do
3: E-Step
4: Calculate distance dt

ik = dist(θ t
i , θ̄

t

k),∀i, k

5: Update rt
ik using dt

ik by Eq. (10.8)
6: M-Step
7: Group devices to Ct

k using rt
ik

8: Update θ̄
t

k using rt
ik and θ t

i by Eq. (10.9) � Compute the new center
9: for each cluster k = 1, . . . ,K do

10: for i ∈ Ct
k do

11: Send θ̄
t

k to device i

12: θ t+1
i ← Local Update(i, θ̄

t

k)

13: end for
14: end for
15: end for

Local models. Given the multi-centers, each local device will fine-tune the model
for individual data distribution by minimizing the regression loss function and the
dissimilarity between the local and assigned global model parameters, which means
that each θ i needs solving the following problem:

min
θi

Eξ∼Di
Fi(θ i; ξ) + λ

K∑
k=1

rikdist(θ i , θ̄k). (10.10)

Here, Eq. (10.10) is an unconstrained optimization problem. The model parameters
can be updated efficiently by multiple steps of SGD, which corresponds to the lo-
cal SGD update in the standard FL scenario. Finally, iterating the above three steps
results in the FeSEM algorithm for solving the multi-center FL problem.

Algorithm 3 Local_Update.

1: Input: i – device index, θ̄
t

k

2: Output: θ t+1
i – updated local model

3: Initialize θ t
i by θ̄

t

k

4: for τ local training steps do
5: Update θ i by any efficient algorithm with data Di � needed for Eq. (10.10)
6: end for
7: Return θ i



188 CHAPTER 10 Graph-aware federated learning

10.4 Graph-knowledge based federated learning
Even though the multi-center FL takes the cluster structure into consideration, Fe-
SEM still assumes that there is no overlap among the global models, which might
not be true or restrict for practical heterogeneous networks. Actually, FeSEM can be
considered as a special case of the two levels of the optimization problem, where
one level is minimizing the regularization term in Eq. (10.7) for searching the cluster
structure and the other is minimizing the supervised loss for data feature extraction.
Mathematically, the class of multi-task learning problems can be formulated as a
bilevel optimization as follows [12]:

min
ϕ

�(ϕ) � f
(
ϕ, {θ∗

i (ϕ)}) (10.11a)

such that θ∗
i (ϕ) ∈ arg min

θ i

Eξ∈Di
Gi(ϕ, θ i; ξ), ∀i ∈ [n], (10.11b)

where ϕ is the UL decision variable, {θ i ,∀i} denote the LL model parameters, f (·, ·)
and Gi(·, ·) respectively represent the UL and LL loss functions, and {θ∗

i (ϕ),∀i ∈
[n]} stand for the optimal solutions of the LL optimization variables. This model
can cover a wide range of hierarchical FL learning problems, e.g., federated acous-
tic speech recognition [3], personalized meta-learning [4], multi-agent actor–critic
schemes in reinforcement learning [15], etc.

Note that the structured graph knowledge is related to all the local models, so the
LL optimization variables would be coupled. One example is the multi-center FL case
as shown in Eq. (10.10), where the kth center involved in the LL problem is calculated
based on all θ is. Therefore, a more generalized bilevel optimization enhanced GAFL,
or BiG-FL in short, is proposed in [25], by formulating the LL optimization problem
as a competitive game as follows:

(P3) min
ϕ

�(ϕ) = f
(
ϕ, {θ∗

i (ϕ)}) (10.12a)

such that θ∗
i (ϕ) = arg min

θ i

Eξ∈Di
Gi

(
ϕ, θ i , θ

∗−i (ϕ); ξ)
, ∀i ∈ [n], (10.12b)

where θ∗−i (ϕ) denotes {θ∗−i (ϕ)|θ∗
j (ϕ), j �= i,∀j ∈ Ni}. From this model, we can see

that the UL optimization problem is targeted at minimizing the globally shareable
parameter ϕ while the LL problem is used for integrating the UL knowledge and
adapting the local data distributions. In the following, we provide one way of apply-
ing the BiG-FL to a GNN-embedded FL system.

10.4.1 Applications of BiG-FL
Inspired by graph embedding learning for link prediction [7], BiG-FL can take the
connectivity of FL clients/devices (i.e., edge information in the global graph struc-
ture) as a guide in the UL optimization process and maps this topology information
to weigh the similarity of neighboring clients’ models.
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Let θ∗(ϕ) ∈ Rn×d denote the concatenation of all the LL optimal solutions. Con-
structing the embedding matrix H via linear message passing in GNNs yields:

H = Lθ∗(ϕ)ϕ, (10.13)

where L ∈ Rn×n is a Laplacian matrix (e.g., L � D̃− 1
2 ÃD̃− 1

2 , where Ã = A + I and
D̃ii = ∑

j Ãij , which are commonly used in graph convolution networks (GCNs)

[8]), θ∗(ϕ) is learned from local models, and ϕ ∈ Rd×d denotes the UL parameters
acting as the weights in GNN with a shape of d × d .
UL loss function. With this graph-based representation, we can formulate the UL
objective function using the cosine embedding loss as

f (ϕ, θ∗(ϕ)) �1

n

n∑
i=1

∑
j∈Ni

(
1 − cos(Hi ,Hj )

)

+ 1

n

n∑
i=1

Ej∼Pi
max

(
0, cos(Hi ,Hj )

) + λ

2
‖ϕ − I‖2 , (10.14)

where i and j are indices of the nodes (i.e., FL clients/devices),

cos(Hi ,Hj )�
HT

i Hj

‖Hi‖‖Hj‖ , (10.15)

and Pi denotes the negative sampling distribution at client i [7].
The UL objective function for BiG-Fed in Eq. (10.14) utilizes the cosine embed-

ding loss to calculate both the client-pair embedding similarity of all linked clients
and the client-pair embedding dissimilarity of negative samples. As the embedding is
derived from the local model weights, Eq. (10.14) couples local learning tasks with
the graphical link prediction task at the server side.

It is worth noting that the link prediction model learns the relative relationships
among the local models. In addition, we expect that the optimized UL model can
maintain the centroid of the overall weight distribution, so we initialize ϕ by the
identity matrix I, and add a regularity term on ϕ with the identity matrix I at the UL
loss function.
LL loss function. The local LL learning tasks of BiG-FL at each device are finding
the Nash equilibrium of the following problem:

θ∗
i (ϕ) = arg min

θ i

gi

(
ϕ, θ i , θ

∗−i (ϕ)
)
,∀i ∈ [n], (10.16)

where gi(ϕ, θ i , θ
∗−i (ϕ)) � Eξ∼Di

Gi(ϕ, θ i , θ
∗−i (ϕ); ξ). In this case, the UL weight ϕ

is introduced into the LL learning task to penalize the distance between the aggre-
gation of neighboring weights and the local one, as we assume that the neighboring
clients share a similar latent space. Hence, for each client, the loss function gi(·)
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includes both the supervised learning error and distance between the local model
parameter and the centroid learned from the UL graph knowledge:

gi

(
ϕ, θ i , θ

∗−i (ϕ)
)
� 1

2
E(Xi ,Yi )∼Di

‖Yi − hθ i
(Xi)‖2

+ λ

2
Ri

(
ϕ, θ i , θ

∗−i (ϕ)
) + κ

2
‖θ i‖2,∀i ∈ [n], (10.17)

where hθ i
(·) : Xi → Yi denotes the nonlinear mapping parametrized by a neu-

ral network with weight θ i , Xi and Yi respectively represent the data and labels
owned by the ith client, Di denotes the joint distribution of Xi and Yi , regulariza-
tion term κ‖θ i‖2 is used for stabilizing the LL learning process with κ > 0, and
Ri(ϕ, θ i , θ

∗−i (ϕ)) denotes the distance based regularization term,

Ri(ϕ, θ i , θ
∗−i (ϕ)) = ∥∥(Li,: − Li,i )θ

∗(ϕ)ϕ + Li,iθ iϕ − θ i

∥∥2
. (10.18)

Furthermore, Li,: denotes the ith row of Laplacian matrix L. Note that term (Li,: −
Li,i )θ

∗(ϕ)ϕ + Li,iθ iϕ is the weight embedding, where (Li,: − Li,i )θ
∗(ϕ)ϕ does not

involve current node’s weight θ i and can be approximated by the FL server in ad-
vance.

The penalization on the difference between the current weight and the weight
embedding in each LL task, together with the fact that the UL variable learns the
relationship of each weight embedding simultaneously via ϕ, allows us to leverage
the graph information to improve the generalization of the model by integrating the
prior knowledge of similarity among the nodes. Next, we will introduce an algorithm
for solving Eq. (10.12).

10.4.2 Algorithm design for BiG-FL
Solving Eq. (10.17) exactly to get the optimal solution is not practical. Instead, fol-
lowing the FL algorithms, we apply SGD for several steps and obtain an approximate
solution of the LL problem. To be more specific, the LL optimization variable is
updated by

θk+1
i = θk

i − βt

m

m∑
j=1

∇θ i
Gi(ϕ

t , θk
i , θ

k
−i; ξj ), ∀i ∈ [n], (10.19)

where k denotes the index of the inner loop by initializing θ0
i = θ t

i , βt is the LL
step size, and ∇Gi(ϕ

t , θk
i , θ

k
−i; ξj ) represents the gradient of the ith BiG-FL LL

empirical loss function evaluated at the point (ϕt , θk
i , θ

k
−i ) with the j th data sample

(i.e., ξj � (Xj ,Yj ) ∼ Dj ). After consecutive τ steps of the inner loop update, we set
θ t+1

i = θ τ
i .
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Algorithm 4 Bilevel optimization enhanced GFL (BiG-FL).

1: Initialize the UL and LL step sizes α0, β0, and model parameters ϕ0, {θ0
i }

2: for round t = 0,1,2, . . . , T do
3: for node i = 0,1,2, . . . , n do
4: Receive (Li,: − Li,i )θ

t , ϕt , and Li,i from FL Server
5: Calculate the gradient of term Ri(ϕ

t , θ t
i , θ

∗−i (ϕ
t )) by Eq. (10.18)

6: Update θ t+1
i by Eq. (10.19) � needed for Eq. (10.17)

7: Send θ t+1
i to the FL Server

8: end for
9: Receive {θ t+1

i } from clients
10: Complete message passing with Eq. (10.13) to generate H
11: Update ϕt+1 by Eq. (10.20) � needed for Eq. (10.14)
12: Distribute ϕt+1, (Li,: − Li,i )θ

t+1, and Li,i to each node
13: end for

Similarly, the LL variable is updated by SGD with computing the hyper-gradient
[5] as follows:

ϕt+1 = ϕt − αt

m

m∑
j=1

(
∇ϕF t

j − ∇2
ϕθG

t
j

(∇2
θθG

t
j

)−1∇θF
t
j

)
, (10.20)

where αt denotes the UL step size, ∇ϕF t
j (the abbreviation of ∇ϕF(ϕt , {θ t

i}; ξj ))

is the gradient of the UL empirical loss function evaluated at point (ϕt , {θ t
i}) with

the j th tail node of the negative sample for head node i (i.e., j ∼ Pi), ∇2
ϕθG

t
j and

(∇2
θθG

t
j )

−1 respectively stand for the stochastic approximation of the Jacobian ma-
trix of the LL loss function with respect to both ϕ and {θ i} and the inverse of Hessian
matrix of the LL loss function. Here, we assume that the LL loss functions are
strongly convex (e.g., if κ is sufficiently large), implying that ∇2

θθG
t
j is invertible.

The complete implementation of BiG-FL is shown in Algorithm 4, where θ is the
concatenation of {θ i ,∀i}.

The convergence guarantees of bilevel optimization algorithms have been investi-
gated in recent works [5,12]. For the BiG-FL problem, it has been shown in [25] that
when the UL and LL step sizes αt and βt are chosen on the order of 1/

√
T , under the

Lipschitz continuity of the UL loss function, as well as its Jacobian and Hessian, plus
the strong convexity of the LL loss functions, Algorithm 4 needs O(1/ε4) iterations
to reach the FOSPs of Eq. (10.12) in the sense that both the first-order stationarity of
the UL optimization variable ϕ, i.e., E‖∇�(ϕt )‖2, and the distance between θ t

i and
its optimal counterpart, i.e., E‖θ t

i − θ∗
i (ϕ

t )‖2, ∀i, are O(ε), where the expectation is
taken over both the randomness of data samples and the index of the iterations.
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FIGURE 10.2

Homologous graph generation and data synthesis.

10.5 Numerical evaluation of GFL models
In this section, we provide numerical experiments for testing the performance of these
GFL models and algorithms with a comparison with the benchmark FedAvg [18] on
both synthetic and real data, which were partially shown in [25].

10.5.1 Results on synthetic data
To generate a heterogeneous network with respect to local model parameters,
topology-based groundtruth weights (embedding) are generated based on a prede-
fined graph, where inputs {Xi} are randomly generated, and the outputs {Yi} are ob-
tained by following our model in Eq. (10.13), which is further illustrated in Fig. 10.2.
In order to evaluate the generalization performance of the models, we need to gen-
erate two homologous graphs so that graphs adopted in training and testing share
the same distribution. To be specific, we generate two graphs that follow homolo-
gous distributions. Each of them has 50 nodes and consists of the same mixture of
three standard normal distributions. The range of the centers of these distributions is
[−0.5,0.5], and the standard deviation of all these distributions is 0.5. We use the four
closest neighboring nodes to build the graph. The dimension of the generated sam-
ples is 64, which is used as the groundtruth weight (reshaped to 8 × 8) of the model
for each client. For data synthesis, both training and testing sets are independently
generated for the 50 LL learning tasks with uniformly distributed samples (100 × 8)
in the range of [−60,60] as the input. The output is obtained by matrix multiplica-
tion of the input and the groundtruth weights. Parameters used in the synthetic data
experiment are shown in Table 10.1.

The multi-layer perception followed by the sigmoid activation functions is used
in the LL learning model, and the total number of layers of θ i is 3 with shapes of
8 × 16, 16 × 16, and 16 × 8, respectively. The UL task is link-prediction based on
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Table 10.1 Synthetic experiment setting.

Common Mixture
Distribution

Distribution Type Gaussian
Number of Center 3
Range of Center [−0.5,0.5]
Standard Deviation 0.5
Dimension 64

Homologous
Graph Generation

Number of Neighbor Connections 4
Node Dimension 64
Node Number of Train Graph 50
Node Number of Test Graph 50

Node Data
Synthesis

Shape of Ground Truth Weight 8×8
Shape of Input 100×8
Range of Input Distribution [−60,60]
Shape of Input 8×100

Node (Lower
Level) Model

Number of Layer 3
Activation Function Sigmoid
Shape of Layers [8×16,

16×16,
16×8]

Upper Level Model Shape of GNN weight 512×512

negative sampling. For each head node, we randomly sample 10 tail nodes from all
negative edges and use the DGL package with a GCN layer [22] to generate the graph
embedding for learning the edge similarity. The GCN layer is used in the UL task,
where ϕ of dimension 512 × 512 serves as the graph convolution kernel of the GCN
layer. Each uploaded LL weight θ i acts as the node input representative, which is
flattened into a shape of 1 × 512 and fitted into the cosine embedding loss function
after message passing. As FeSEM requires prior knowledge about the number of
clustering centers, we set K = 3 to reflect the setting of the three mixed Gaussian
distributions.

The numerical results are shown in Fig. 10.3. It can be observed that the
consensus-based models perform the worst in comparison with the cluster or graph
embedding based ones, as there are three mixture Gaussian data samples over the
graph. FeSEM improves the performance of classic FedAvg and DFL as the EM al-
gorithm is able to find the three centers and tailor the model to fit different kinds
of data distributions. BiG-FL shows the best performance among all the models in
this case, which justifies the power of the UL learning task for extracting embedding
through the graph information and transferring this similarity to the testing phrase.

10.5.2 Results on real-world data for NLP
A large lookup weight table related to the number of words in the corpus plays a
central role in natural language processing (NLP) tasks. Each row of the table corre-
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FIGURE 10.3

Performance comparison (local testing loss).

sponds to a word which is involved in the current task (i.e., word embedding). These
word embeddings are trainable weights and are non-i.i.d. due to textual word data
originating from different domains, and have different dimensions and interleaved
weight spaces due to the differences in corpus words.

We adopt the datasets from [9] which consist of 16 different domains of review
data. As shown in Table 10.2, the datasets differ in terms of review category, the aver-
age length of the review sentences, and the number of unique words. The goal of this
task is to train a multi-domain next word prediction model. Here, we use the GloVe
embedding vectors [19], which are commonly applied for embedding initialization
to act as a global representation. We group the non-i.i.d. embeddings from multi-
ple domains and project them into this global vector space. For the LL model, we
use the classic neural probabilistic language model [1] for word embedding, where
the embedding layer (i.e., a big lookup table) is with a dimension of 63144 × 100,
a fully-connected hidden layer is with a dimension of 100 × 200 followed by a tanh
function, and a decoder layer has a size of 200×63144. The length of the sliding win-
dow for the next word prediction task is 35 and the batch size is 100. The UL model
is identical to the synthetic data case. We also set the dimension of the embedding
layer for each client equal to the size of the total number of tokens for the purpose
of alignment. If the current client contains a word, we set the corresponding row of
the lookup table matrix of the embedding layer as trainable, and the row that does
not have a corresponding word as 0. The total number of trainable rows per client is
shown in the last column of Table 10.2.

The results are shown in Fig. 10.4. It can be observed that the testing losses are
consistent with the synthetic dataset case. Although the testing curve of BiG-FL has
some fluctuations at the early stage of the convergence, it achieves the lowest loss
eventually. The reason might be due to the competition among the LL learning mod-
els, which affects the embedding search progress in the UL problem, and once the
graph structure is learned, BiG-FL will showcase a stable convergence behavior. This
example verifies the importance of leveraging the similarity among the word embed-
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Table 10.2 Statistics of multi-domain datasets.
Dataset Sentences Avg Length Unique/Total words
Books 2000 159 19,013/63,144
Electronics 1998 101 8799/63,144
DVD 2000 173 20,308/63,144
Kitchen 2000 89 9188/63,144
Apparel 2000 57 6655/63,144
Camera 1997 130 7657/63,144
Health 2000 81 8721/63,144
Music 2000 136 16,459/63,144
Toys 2000 90 8341/63,144
Video 2000 156 18,437/63,144
Baby 1900 104 8424/63,144
Magazine 1970 117 11,552/63,144
Software 1915 129 5788/63,144
Sports 2000 94 9816/63,144
IMDN 2000 269 25,195/63,144
MR 2000 21 7315/63,144

FIGURE 10.4

Real-data experiment results (testing loss).

dings in the multi-task FL problem and superiority of BiG-FL for solving this class
of problems.

10.6 Summary
In this chapter, we introduced three major classes of the GFL framework, includ-
ing decentralized FL, multi-center FL, and bilevel optimization enhanced FL. Each
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FL model is mainly applicable for different practical FL scenarios, where DFL is de-
signed for data samples collected in a decentralized way over a graph, multi-center FL
is used for the clustered data structures, and BiG-FL is superior for integrating gen-
eral topology information with adaptation to local learning tasks. Given the unique
features of these GFL models, we further studied efficient gradient-based algorithms
for solving the corresponding optimization problems in an FL way. It is concluded
that the graph structure oriented FL systems can improve the classic FedAvg FL in
terms of both learning efficiency and generalization performance.
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